Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.439
Filtrar
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38581217

RESUMO

Pelleted total mixed ration (P-TMR) feeding, which has become a common practice in providing nutrition for fattening sheep, requires careful consideration of the balance between forage neutral detergent fiber (FNDF) and rumen degradable starch (RDS) to maintain proper rumen functions. The present study aimed to investigate the effects of the dietary FNDF/RDS ratio (FRR) on chewing activity, ruminal fermentation, ruminal microbes, and nutrient digestibility in Hu sheep fed a P-TMR diet. This study utilized eight ruminally cannulated male Hu sheep, following a 4 × 4 Latin square design with 31 d each period. Diets consisted of four FRR levels: 1.0 (high FNDF/RDS ratio, HFRR), 0.8 (middle high FNDF/RDS ratio, MHFRR), 0.6 (middle low FNDF/RDS ratio, MLFRR), and 0.4 (low FNDF/RDS ratio, LFRR). Reducing the dietary FRR levels resulted in a linear decrease in ruminal minimum pH and mean pH, while linearly increasing the duration and area of pH below 5.8 and 5.6, as well as the acidosis index. Sheep in the HFRR and MHFRR groups did not experience subacute ruminal acidosis (SARA), whereas sheep in another two groups did. The concentration of total volatile fatty acid and the molar ratios of propionate and valerate, as well as the concentrate of lactate in the rumen linearly increased with reducing dietary FRR, while the molar ratio of acetate and acetate to propionate ratio linearly decreased. The degradability of NDF and ADF for alfalfa hay has a quadratic response with reducing the dietary FRR. The apparent digestibility of dry matter, organic matter, neutral detergent fiber, and acid detergent fiber linearly decreased when the dietary FRR was reduced. In addition, reducing the dietary FRR caused a linear decrease in OTUs, Chao1, and Ace index of ruminal microflora. Reducing FRR in the diet increased the percentage of reads assigned as Firmicutes, but it decreased the percentage of reads assigned as Bacteroidetes in the rumen. At genus level, the percentage of reads assigned as Prevotella, Ruminococcus, Succinivibrio, and Butyrivibrio linearly decreased when the dietary FRR was reduced. The results of this study demonstrate that the dietary FRR of 0.8 is crucial in preventing the onset of SARA and promotes an enhanced richness of ruminal microbes and also improves fiber digestibility, which is a recommended dietary FRR reference when formulating P-TMR diets for sheep.


Forage neutral detergent fiber (FNDF) and rumen degradable starch (RDS) are key components of carbohydrates in the diet for ruminants, which would reflect saliva secretion and the acid production potential of feed. However, appropriate FNDF to RDS ratios (FRR) applicable to ruminants under the condition of pelleted total mixed ration (P-TMR) feeding have not been reported. In this study, we investigated the effects of the dietary FRR on chewing activity, ruminal fermentation, ruminal microbial communities, and nutrient digestibility of Hu sheep under P-TMR feeding. The results indicate that reducing dietary FRR levels would induce acidosis in sheep, which negatively affected fiber utilization and ruminal bacterial communities. The FRR of 0.8 was a recommended dietary FRR when formulating a P-TMR diet for fattening sheep, as indicated by decreased ruminal acidosis risk and increased richness of ruminal microbes in the rumen as well as nutrient digestibility.


Assuntos
Acidose , Doenças dos Ovinos , Masculino , Feminino , Animais , Ovinos , Leite/metabolismo , Mastigação/fisiologia , Amido/metabolismo , Lactação/fisiologia , Detergentes/metabolismo , Silagem/análise , Propionatos/metabolismo , Fermentação , Rúmen/metabolismo , Fibras na Dieta/metabolismo , Carboidratos da Dieta/metabolismo , Dieta/veterinária , Nutrientes , Acetatos/metabolismo , Acidose/veterinária , Digestão/fisiologia
2.
mSystems ; 9(4): e0140123, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38441031

RESUMO

The microbial utilization of dietary carbohydrates is closely linked to the pivotal role of the gut microbiome in human health. Inherent to the modulation of complex microbial communities, a prebiotic implies the selective utilization of a specific substrate, relying on the metabolic capacities of targeted microbes. In this study, we investigated the metabolic capacities of 17 commensal bacteria of the human gut microbiome toward dietary carbohydrates with prebiotic potential. First, in vitro experiments allowed the classification of bacterial growth and fermentation profiles in response to various carbon sources, including agave inulin, corn fiber, polydextrose, and citrus pectin. The influence of phylogenetic affiliation appeared to statistically outweigh carbon sources in determining the degree of carbohydrate utilization. Second, we narrowed our focus on six commensal bacteria representative of the Bacteroidetes and Firmicutes phyla to perform an untargeted high-resolution liquid chromatography-mass spectrometry metabolomic analysis: Bacteroides xylanisolvens, Bacteroides thetaiotaomicron, Bacteroides intestinalis, Subdoligranulum variabile, Roseburia intestinalis, and Eubacterium rectale exhibited distinct metabolomic profiles in response to different carbon sources. The relative abundance of bacterial metabolites was significantly influenced by dietary carbohydrates, with these effects being strain-specific and/or carbohydrate-specific. Particularly, the findings indicated an elevation in short-chain fatty acids and other metabolites, including succinate, gamma-aminobutyric acid, and nicotinic acid. These metabolites were associated with putative health benefits. Finally, an RNA-Seq transcriptomic approach provided deeper insights into the underlying mechanisms of carbohydrate metabolization. Restricting our focus on four commensal bacteria, including B. xylanisolvens, B. thetaiotaomicron, S. variabile, and R. intestinalis, carbon sources did significantly modulate the level of bacterial genes related to the enzymatic machinery involved in the metabolization of dietary carbohydrates. This study provides a holistic view of the molecular strategies induced during the dynamic interplay between dietary carbohydrates with prebiotic potential and gut commensal bacteria. IMPORTANCE: This study explores at a molecular level the interactions between commensal health-relevant bacteria and dietary carbohydrates holding prebiotic potential. We showed that prebiotic breakdown involves the specific activation of gene expression related to carbohydrate metabolism. We also identified metabolites produced by each bacteria that are potentially related to our digestive health. The characterization of the functional activities of health-relevant bacteria toward prebiotic substances can yield a better application of prebiotics in clinical interventions and personalized nutrition. Overall, this study highlights the importance of identifying the impact of prebiotics at a low resolution of the gut microbiota to characterize the activities of targeted bacteria that can play a crucial role in our health.


Assuntos
Carboidratos da Dieta , Prebióticos , Humanos , Carboidratos da Dieta/metabolismo , Filogenia , Bactérias/genética , Carbono/metabolismo
3.
Trop Anim Health Prod ; 56(2): 104, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483713

RESUMO

We investigated the effects of replacing ground corn with full-fat corn germ (FFCG) on milk production, milk composition, and nutrient use in cows fed sugarcane bagasse and cactus cladodes. Ten multiparous Girolando cows (average body weight 500 ± 66 kg, 90 ± 15 days in milk) were distributed in a replicated 5 × 5 Latin Square and assigned to five dietary treatments containing 0%, 25%, 50%, 75%, or 100% of full-fat corn germ in substitution to ground corn. Full-fat corn germ increased fat-corrected milk yield by 2.2 kg/day and the synthesis of fat, lactose, and total solids in milk by 94.4, 60.0, and 201.10 g/day, respectively (p < 0.05). Cows fed corn germ quadratically increased (p < 0.05) dry matter intake by 1.01 kg/day, with the intake of crude protein and total digestible nutrients following the same pattern. Conversely, the substitution of corn for full-fat corn germ linearly reduced (p < 0.05) the total non-fiber carbohydrate intake from 5.79 to 4.40 kg/d. Except for ether extract and non-fiber carbohydrates, full-fat corn germ did not alter (p > 0.05) nutrient digestibility. Cows fed corn germ excreted less (p < 0.05) urea-N in milk and urine N. These results demonstrate that full-fat corn germ can partially replace ground corn to enhance the milk production efficiency of crossbred cows fed cactus cladodes and sugarcane bagasse. Furthermore, including sugarcane bagasse in FFCG-supplemented diets prevents milk fat depression in cows fed cactus cladodes.


Assuntos
Cactaceae , Saccharum , Feminino , Bovinos , Animais , Leite/metabolismo , Celulose/metabolismo , Zea mays , Lactação , Dieta/veterinária , Carboidratos da Dieta/metabolismo , Digestão , Rúmen/metabolismo , Silagem/análise
4.
J Physiol ; 602(8): 1681-1702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502562

RESUMO

In skeletal muscle, glycogen particles are distributed both within and between myofibrils, as well as just beneath the sarcolemma. Their precise localisation may influence their degradation rate. Here, we investigated how exercise at different intensities and durations (1- and 15-min maximal exercise) with known variations in glycogenolytic rate and contribution from anaerobic metabolism affects utilisation of the distinct pools. Furthermore, we investigated how decreased glycogen availability achieved through lowering carbohydrate and energy intake after glycogen-depleting exercise affect the storage of glycogen particles (size, numerical density, localisation). Twenty participants were divided into two groups performing either a 1-min (n = 10) or a 15-min (n = 10) maximal cycling exercise test. In a randomised, counterbalanced, cross-over design, the exercise tests were performed following short-term consumption of two distinct diets with either high or moderate carbohydrate content (10 vs. 4 g kg-1 body mass (BM) day-1) mediating a difference in total energy consumption (240 vs. 138 g kg-1 BM day-1). Muscle biopsies from m. vastus lateralis were obtained before and after the exercise tests. Intermyofibrillar glycogen was preferentially utilised during the 1-min test, whereas intramyofibrillar glycogen was preferentially utilised during the 15-min test. Lowering carbohydrate and energy intake after glycogen-depleting exercise reduced glycogen availability by decreasing particle size across all pools and diminishing numerical density in the intramyofibrillar and subsarcolemmal pools. In conclusion, distinct subcellular glycogen pools were differentially utilised during 1-min and 15-min maximal cycling exercise. Additionally, lowered carbohydrate and energy consumption after glycogen-depleting exercise altered glycogen storage by reducing particle size and numerical density, depending on subcellular localisation. KEY POINTS: In human skeletal muscle, glycogen particles are localised in distinct subcellular compartments, referred to as intermyofibrillar, intramyofibrillar and subsarcolemmal pools. The intermyofibrillar and subsarcolemmal pools are close to mitochondria, while the intramyofibrillar pool is at a distance from mitochondria. We show that 1 min of maximal exercise is associated with a preferential utilisation of intermyofibrillar glycogen, and, on the other hand, that 15 min of maximal exercise is associated with a preferential utilisation of intramyofibrillar glycogen. Furthermore, we demonstrate that reduced glycogen availability achieved through lowering carbohydrate and energy intake after glycogen-depleting exercise is characterised by a decreased glycogen particle size across all compartments, with the numerical density only diminished in the intramyofibrillar and subsarcolemmal compartments. These results suggest that exercise intensity influences the subcellular pools of glycogen differently and that the dietary content of carbohydrates and energy is linked to the size and subcellular distribution of glycogen particles.


Assuntos
Glicogênio , Músculo Esquelético , Humanos , Glicogênio/metabolismo , Músculo Esquelético/fisiologia , Miofibrilas/metabolismo , Exercício Físico/fisiologia , Músculo Quadríceps/metabolismo , Carboidratos da Dieta/metabolismo
5.
Obesity (Silver Spring) ; 32(4): 733-742, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38410048

RESUMO

OBJECTIVE: High-fat diets cause obesity in male mice; however, the underlying mechanisms remain controversial. Here, three contrasting ideas were assessed: hedonic overdrive, reverse causality, and passive overconsumption models. METHODS: A total of 12 groups of 20 individually housed 12-week-old C57BL/6 male mice were exposed to 12 high-fat diets with varying fat content from 40% to 80% (by calories), protein content from 5% to 30%, and carbohydrate content from 8.4% to 40%. Body weight and food intake were monitored for 30 days after 7 days at baseline on a standard low-fat diet. RESULTS: After exposure to the diets, energy intake increased first, and body weight followed later. Intake then declined. The peak energy intake was dependent on both dietary protein and carbohydrate, but not the dietary fat and energy density, whereas the rate of decrease in intake was only related to dietary protein. On high-fat diets, the weight of food intake declined, but despite this average reduction of 14.4 g in food intake, they consumed, on average, 357 kJ more energy than at baseline. CONCLUSIONS: The hedonic overdrive model fit the data best. The other two models were not supported.


Assuntos
Dieta Hiperlipídica , Carboidratos da Dieta , Masculino , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Carboidratos da Dieta/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Gorduras na Dieta/metabolismo , Ingestão de Energia , Proteínas na Dieta
6.
Obes Rev ; 25(5): e13706, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38355200

RESUMO

While the "precision nutrition" movement is at an early stage of development, several investigations have compared low-fat versus carbohydrate (CHO)-modified diets (i.e., low-or-reduced-CHO, low glycemic index/load diets, and high-fiber) in people with normal versus impaired glucose metabolism. The purpose of this scoping review was to summarize evidence in support of the hypothesis that CHO-modified diets are more effective for weight loss among people with impaired glucose metabolism. Fifteen articles were included in this review: seven retrospective analyses of randomized clinical trials and eight prospective randomized clinical trials with prespecified hypotheses related to a diet (low-fat vs. CHO-modified) × phenotype (normal vs. impaired) interaction. Evidence in support of the hypothesis was identified in six of seven retrospective and three of eight prospective studies, which led to a recommendation of CHO-modified diets as a first-line option for people with impaired glucose metabolism. However, the evidence in support of this recommendation is relatively weak, and dietary prescriptions should consider additional contextual information that may influence overall dietary adherence. Additional and rigorous research using innovative randomized experimental approaches is needed for stronger dietary weight loss recommendations based on pretreatment glycemic status.


Assuntos
Glicemia , Carboidratos da Dieta , Humanos , Estudos Prospectivos , Carboidratos da Dieta/metabolismo , Glicemia/metabolismo , Estudos Retrospectivos , Redução de Peso , Dieta , Dieta com Restrição de Carboidratos
7.
Nat Commun ; 15(1): 1073, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316771

RESUMO

Dietary restriction promotes resistance to surgical stress in multiple organisms. Counterintuitively, current medical protocols recommend short-term carbohydrate-rich drinks (carbohydrate loading) prior to surgery, part of a multimodal perioperative care pathway designed to enhance surgical recovery. Despite widespread clinical use, preclinical and mechanistic studies on carbohydrate loading in surgical contexts are lacking. Here we demonstrate in ad libitum-fed mice that liquid carbohydrate loading for one week drives reductions in solid food intake, while nearly doubling total caloric intake. Similarly, in humans, simple carbohydrate intake is inversely correlated with dietary protein intake. Carbohydrate loading-induced protein dilution increases expression of hepatic fibroblast growth factor 21 (FGF21) independent of caloric intake, resulting in protection in two models of surgical stress: renal and hepatic ischemia-reperfusion injury. The protection is consistent across male, female, and aged mice. In vivo, amino acid add-back or genetic FGF21 deletion blocks carbohydrate loading-mediated protection from ischemia-reperfusion injury. Finally, carbohydrate loading induction of FGF21 is associated with the induction of the canonical integrated stress response (ATF3/4, NF-kB), and oxidative metabolism (PPARγ). Together, these data support carbohydrate loading drinks prior to surgery and reveal an essential role of protein dilution via FGF21.


Assuntos
Dieta da Carga de Carboidratos , Fatores de Crescimento de Fibroblastos , Traumatismo por Reperfusão , Procedimentos Cirúrgicos Operatórios , Animais , Feminino , Humanos , Masculino , Camundongos , Carboidratos da Dieta/metabolismo , Proteínas na Dieta/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/cirurgia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/metabolismo
8.
Fish Physiol Biochem ; 50(2): 635-651, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38165563

RESUMO

Largemouth bass (Micropterus salmoides) were fed with three diets containing 6%, 12%, and 18% wheat starch for 70 days to examine their impacts on growth performance, glucose and lipid metabolisms, and liver and intestinal health. The results suggested that the 18% starch group inhibited the growth, and improved the hepatic glycogen content compared with the 6% and 12% starch groups (P < 0.05). High starch significantly improved the activities of glycolysis-related enzymes, hexokinase (HK), glucokinase (GK), phosphofructokinase (PFK), and pyruvate kinase (PK) (P < 0.05); promoted the mRNA expression of glycolysis-related phosphofructokinase (pfk); decreased the activities of gluconeogenesis-related enzymes, pyruvate carboxylase (PC), and phosphoenolpyruvate carboxykinase (PEPCK); and reduced the mRNA expression of gluconeogenesis-related fructose-1,6-bisphosphatase-1(fbp1) (P < 0.05). High starch reduced the hepatic mRNA expressions of bile acid metabolism-related cholesterol hydroxylase (cyp7a1) and small heterodimer partner (shp) (P < 0.05), increased the activity of hepatic fatty acid synthase (FAS) (P < 0.05), and reduced the hepatic mRNA expressions of lipid metabolism-related peroxisome proliferator-activated receptor α (ppar-α) and carnitine palmitoyltransferase 1α (cpt-1α) (P < 0.05). High starch promoted inflammation; significantly reduced the mRNA expressions of anti-inflammatory cytokines transforming growth factor-ß1 (tgf-ß1), interleukin-10 (il-10), and interleukin-11ß (il-11ß); and increased the mRNA expressions of pro-inflammatory cytokine tumor necrosis factor-α (tnf-α), interleukin-1ß (il-1ß), and interleukin-8 (il-8) in the liver and intestinal tract (P < 0.05). Additionally, high starch negatively influenced the intestinal microbiota, with the reduced relative abundance of Trichotes and Actinobacteria and the increased relative abundance of Firmicutes and Proteobacteria. In conclusion, low dietary wheat starch level (6%) was more profitable to the growth and health of M. salmoides, while high dietary starch level (12% and 18%) could regulate the glucose and lipid metabolisms, impair the liver and intestinal health, and thus decrease the growth performance of M. salmoides.


Assuntos
Bass , Glucose , Animais , Glucose/metabolismo , Amido/farmacologia , Bass/fisiologia , Triticum/metabolismo , Metabolismo dos Lipídeos , Dieta/veterinária , Fígado/metabolismo , Carboidratos da Dieta/metabolismo , Lipídeos , Fosfofrutoquinases/metabolismo , RNA Mensageiro/metabolismo
9.
Nutrition ; 118: 112249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38035450

RESUMO

OBJECTIVES: Studies suggest that diets with a low glycemic index and high protein are favorable in aiding weight loss and improving weight maintenance; however, methods to measure dietary intake are comprehensive both for the participant and the study staff. We aimed to validate the accuracy of the dietary glycemic index and protein intake assessed through a food frequency questionnaire against a 4-d weighed food record in Danish pregnant women with obesity. METHODS: A total of 31 pregnant women completed a 29-item food frequency questionnaire and a 4-d weighed food record with overlapping time periods. The women had a mean (± SD) age of 30.6 ± 3.9 y and a prepregnancy body mass index of 33.9 ± 3.5 kg/m2. We evaluated the validity of the food frequency questionnaire by Bland-Altman plots and the Spearman correlation coefficient. RESULTS: The results of the validation study found good acceptance of the 29-item food frequency questionnaire. The mean intake of glycemic index, glycemic load, and protein intake of the 29-item food frequency questionnaire and the weighed food record correlated well, although intake data of the 29-item food frequency questionnaire tended to be lower. Spearman correlation coefficients had moderate to high correlations for glycemic index (ρ = 0.73; P < 0.001) and protein intake (ρ = 0.70; P < 0.001). A moderate correlation was found for glycemic load (ρ = 0.55; P = 0.002). There was no correlation for carbohydrates (ρ = 0.21; P = 0.253). CONCLUSION: The results suggest no risk of bias between the two methods of assessment; hence, a 29-item food frequency questionnaire can be used to assess the mean glycemic index, glycemic load, and protein intake in pregnant women with obesity.


Assuntos
Carga Glicêmica , Gestantes , Humanos , Feminino , Gravidez , Índice Glicêmico , Inquéritos e Questionários , Dieta , Obesidade , Carboidratos da Dieta/metabolismo
10.
Obesity (Silver Spring) ; 32(1): 12-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37846155

RESUMO

The pathogenesis of obesity remains contested. Although genetics is important, the rapid rise in obesity with Western culture and diet suggests an environmental component. Today, some of the major hypotheses for obesity include the energy balance hypothesis, the carbohydrate-insulin model, the protein-leverage hypothesis, and the seed oil hypothesis. Each hypothesis has its own support, creating controversy over their respective roles in driving obesity. Here we propose that all hypotheses are largely correct and can be unified by another dietary hypothesis, the fructose survival hypothesis. Fructose is unique in resetting ATP levels to a lower level in the cell as a consequence of suppressing mitochondrial function, while blocking the replacement of ATP from fat. The low intracellular ATP levels result in carbohydrate-dependent hunger, impaired satiety (leptin resistance), and metabolic effects that result in the increased intake of energy-dense fats. This hypothesis emphasizes the unique role of carbohydrates in stimulating intake while fat provides the main source of energy. Thus, obesity is a disorder of energy metabolism, in which there is low usable energy (ATP) in the setting of elevated total energy. This leads to metabolic effects independent of excess energy while the excess energy drives weight gain.


Assuntos
Frutose , Obesidade , Humanos , Obesidade/metabolismo , Aumento de Peso , Dieta , Metabolismo Energético , Trifosfato de Adenosina/metabolismo , Gorduras na Dieta/metabolismo , Carboidratos da Dieta/metabolismo , Ingestão de Energia
11.
Anim Biotechnol ; 35(1): 2262539, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37782319

RESUMO

Bodyweight loss and rumen microbial dysfunction of grazing sheep was a challenge for the sheep production industry during cold season, which were considered to correlated with under-roughage-feeding. Alfalfa is a good roughage supplementary for ruminants, which can improve grazing sheep bodyweight-loss and rumen microbial dysfunction during grass-withering period. This study evaluated the effects of alfalfa hay supplementary change dietary non-fibrous carbohydrate/neutral detergent fiber (NFC/NDF) ratios on rumen fermentation and microbial function of Gansu alpine fine wool sheep during extreme cold season. 120 ewes (3-4 yrs) with an average body weight of 28.71 ± 1.22 kg were allocated randomly into three treatments, and fed NFC/NDF of 1.92 (H group), 1.11 (M group), and 0.68 (L group), respectively. This study was conducted for 107 d, including 7 d of adaption to the diets. The rumen fermentation parameters and microbial characteristics were measured after the end of feeding trials. The results showed that the concentrations of sheep body weight, nitrogen components (Total-N, Soluble protein-N and Ammonia-N), blood biochemical indices (LDH, BUN and CHO) and ruminal volatile fatty acids (TVFA and propionate) significantly increased with an increase in the proportion of NFC/NDF ratios (p < .05), and the acetate and acetate/propionat ratio presented a contrary decreasing trend (p < .05). A total of 1018 OTUs were obtained with 97% consistency. Ruminococcus, Ruminococcaceae and Prevotella were observed as the predominant phyla in ruminal fluid microbiota. Higher NFC/NDF ratios with Alfalfa supplementary increased the richness and diversity of ruminal fluid microbiota, and decreased ruminal fluid microbiota beta-diversity. Using clusters of orthologous groups (COG), the ruminal fluid microbiota of alfalfa supplementary feeding showed low immune pathway and high carbohydrate metabolism pathway. In summary, the study suggested that there was an increasing tendency in dietary NFC/NDF ratio of 1.92 in body weight, ruminal fermentation, microbial community composition and fermentation characteristics through developing alfalfa supplementary system.


Assuntos
Carboidratos da Dieta , Medicago sativa , Animais , Ovinos , Feminino , Carboidratos da Dieta/análise , Carboidratos da Dieta/metabolismo , Medicago sativa/metabolismo , Detergentes/análise , Detergentes/metabolismo , Carneiro Doméstico , Lactação , Rúmen/metabolismo , Fermentação , , Ração Animal/análise , Dieta/veterinária , Fibras na Dieta/análise , Fibras na Dieta/metabolismo , Acetatos/análise , Acetatos/metabolismo , Peso Corporal
12.
Cell ; 187(1): 62-78.e20, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38096822

RESUMO

The microbiota influences intestinal health and physiology, yet the contributions of commensal protists to the gut environment have been largely overlooked. Here, we discover human- and rodent-associated parabasalid protists, revealing substantial diversity and prevalence in nonindustrialized human populations. Genomic and metabolomic analyses of murine parabasalids from the genus Tritrichomonas revealed species-level differences in excretion of the metabolite succinate, which results in distinct small intestinal immune responses. Metabolic differences between Tritrichomonas species also determine their ecological niche within the microbiota. By manipulating dietary fibers and developing in vitro protist culture, we show that different Tritrichomonas species prefer dietary polysaccharides or mucus glycans. These polysaccharide preferences drive trans-kingdom competition with specific commensal bacteria, which affects intestinal immunity in a diet-dependent manner. Our findings reveal unappreciated diversity in commensal parabasalids, elucidate differences in commensal protist metabolism, and suggest how dietary interventions could regulate their impact on gut health.


Assuntos
Microbioma Gastrointestinal , Parabasalídeos , Polissacarídeos , Animais , Humanos , Camundongos , Fibras na Dieta , Intestino Delgado/metabolismo , Polissacarídeos/metabolismo , Parabasalídeos/metabolismo , Carboidratos da Dieta/metabolismo , Biodiversidade
13.
Nutrients ; 15(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38140339

RESUMO

Improper glycemic carbohydrates (GCs) consumption can be a potential risk factor for metabolic diseases such as obesity and diabetes, which may lead to cognitive impairment. Although several potential mechanisms have been studied, the biological relationship between carbohydrate consumption and neurocognitive impairment is still uncertain. In this review, the main effects and mechanisms of GCs' digestive characteristics on cognitive functions are comprehensively elucidated. Additionally, healthier carbohydrate selection, a reliable research model, and future directions are discussed. Individuals in their early and late lives and patients with metabolic diseases are highly susceptible to dietary-induced cognitive impairment. It is well known that gut function is closely related to dietary patterns. Unhealthy carbohydrate diet-induced gut microenvironment disorders negatively impact cognitive functions through the gut-brain axis. Moreover, severe glycemic fluctuations, due to rapidly digestible carbohydrate consumption or metabolic diseases, can impair neurocognitive functions by disrupting glucose metabolism, dysregulating calcium homeostasis, oxidative stress, inflammatory responses, and accumulating advanced glycation end products. Unstable glycemic status can lead to more severe neurological impairment than persistent hyperglycemia. Slow-digested or resistant carbohydrates might contribute to better neurocognitive functions due to stable glycemic response and healthier gut functions than fully gelatinized starch and nutritive sugars.


Assuntos
Carboidratos da Dieta , Doenças Metabólicas , Humanos , Carboidratos da Dieta/efeitos adversos , Carboidratos da Dieta/metabolismo , Amido/metabolismo , Dieta , Obesidade , Hexoses , Índice Glicêmico/fisiologia , Glicemia/metabolismo
14.
Physiol Rep ; 11(23): e15885, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38036455

RESUMO

Previous studies have demonstrated both energy restriction (ER) and higher protein (HP), lower carbohydrate (LC) diets downregulate hepatic de novo lipogenesis. Little is known about the independent and combined impact of ER and HP/LC diets on tissue-specific lipid kinetics in leptin receptor-deficient, obese rodents. This study investigated the effects of ER and dietary macronutrient content on body composition; hepatic, subcutaneous adipose tissue (SAT), and visceral AT (VAT) lipid metabolic flux (2 H2 O-labeling); and blood and liver measures of cardiometabolic health in six-week-old female obese Zucker rats (Leprfa+/fa+ ). Animals were randomized to a 10-week feeding intervention: ad libitum (AL)-HC/LP (76% carbohydrate/15% protein), AL-HP/LC (35% protein/56% carbohydrate), ER-HC/LP, or ER-HP/LC. ER groups consumed 60% of the feed consumed by AL. AL gained more fat mass than ER (P-energy = 0.012) and HP/LC gained more fat mass than HC/LP (P-diet = 0.025). Hepatic triglyceride (TG) concentrations (P-interaction = 0.0091) and absolute hepatic TG synthesis (P-interaction = 0.012) were lower in ER-HP/LC versus ER-HC/LP. ER had increased hepatic, SAT, and VAT de novo cholesterol fractional synthesis, absolute hepatic cholesterol synthesis, and serum cholesterol (P-energy≤0.0035). A HP/LC diet, independent of energy intake, led to greater gains in fat mass. A HP/LC diet, in the context of ER, led to reductions in absolute hepatic TG synthesis and TG content. However, ER worsened cholesterol metabolism. Increased adipose tissue TG retention with the HP/LC diet may reflect improved lipid storage capacity and be beneficial in this genetic model of obesity.


Assuntos
Carboidratos da Dieta , Lipogênese , Animais , Feminino , Ratos , Colesterol/metabolismo , Carboidratos da Dieta/metabolismo , Proteínas na Dieta/farmacologia , Proteínas na Dieta/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Ratos Zucker , Triglicerídeos
15.
J Nutr Sci ; 12: e114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025305

RESUMO

Few studies have examined the influence of pre-exercise meals with different glycaemic indices (GIs) on substrate oxidation and non-homeostatic appetite (i.e. food reward) in adults of various ages and ethnicities. We aimed to examine the effects of pre-exercise high and low GI meals on substrate oxidation and food reward in middle-aged Japanese women. This randomised crossover trial included fifteen middle-aged women (aged 40⋅9 ± 6⋅5 years, mean ± sd). The participants consumed a high or low GI breakfast at 09.00 and rested until 11.00. Thereafter, participants performed a 60-min walk at 50 % of their estimated maximum oxygen uptake (11.00-12.00) and rested until 13.00. Expired gas samples were collected every 30 min prior to walking, and samples were collected continuously throughout the walking and post-walking periods. Blood samples and subjective appetite ratings were collected every 30 min, except during walking. The Leeds Food Preference Questionnaire in Japanese (LFPQ-J) was used to assess food reward at 09.00, 10.00, and 13.00 h. The cumulative fat oxidation during exercise was higher in the low GI trial than in the high GI trial (P = 0⋅03). The cumulative carbohydrate oxidation during walking was lower in the low GI trial than in the high GI trial (P = 0⋅01). Trial-by-time interactions were not found for any food-reward parameters between trials. Low GI meals elicited enhanced fat oxidation during a subsequent 60-min walk in middle-aged women. However, meals with different GIs did not affect food reward evaluated over time in the present study.


Assuntos
Apetite , Índice Glicêmico , Adulto , Pessoa de Meia-Idade , Humanos , Feminino , Glicemia/metabolismo , Consumo de Oxigênio , Carboidratos da Dieta/metabolismo , Oxigênio , Refeições
16.
Clin Nutr ; 42(11): 2249-2257, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37820518

RESUMO

BACKGROUND & AIMS: The protein leverage hypothesis (PLH) proposed that strict regulation of protein intake drives energy overconsumption and obesity when diets are diluted by fat and/or carbohydrates. Evidence about the PLH has been found in adults, while studies in children are limited. Thus, we aimed to test the PLH by assessing the role of dietary protein on macronutrients, energy intake, and obesity risk using data from preschool children followed for 1.3 years. METHODS: 553 preschool children aged 2-6 years from the 'Healthy Start' project were included. EXPOSURES: The proportion of energy intake from protein, fat, and carbohydrates collected from a 4-day dietary record. OUTCOMES: Energy intake, BMI z-score, fat mass (FM) %, waist- (WHtR) and hip-height ratio (HHtR). Power function analysis was used to test the leverage of protein on energy intake. Mixture models were used to explore interactive associations of macronutrient composition on all these outcomes, with results visualized as response surfaces on the nutritional geometry. RESULTS: Evidence for the PLH was confirmed in preschool children. The distribution of protein intake (% of MJ, IQR: 3.2) varied substantially less than for carbohydrate (IQR: 5.7) or fat (IQR: 6.3) intakes, suggesting protein intake is most tightly regulated. Absolute energy intake varied inversely with dietary percentage energy from protein (L = -0.14, 95% CI: -0.25, -0.04). Compared to children with high fat or carbohydrate intakes, children with high dietary protein intake (>20% of MJ) had a greater decrease in WHtR and HHtR over the 1.3-year follow-up, offering evidence for the PLH in prospective analysis. But no association was observed between macronutrient distribution and changes in BMI z-score or FM%. CONCLUSIONS: In this study in preschool children, protein intake was the most tightly regulated macronutrient, and energy intake was an inverse function of dietary protein concentration, indicating the evidence for protein leverage. Increases in WHtR and HHtR were principally associated with the dietary protein dilution, supporting the PLH. These findings highlight the importance of protein in children's diets, which seems to have significant implications for childhood obesity risk and overall health.


Assuntos
Proteínas na Dieta , Obesidade Pediátrica , Criança , Adulto , Humanos , Pré-Escolar , Proteínas na Dieta/metabolismo , Obesidade Pediátrica/epidemiologia , Dieta , Ingestão de Energia , Carboidratos , Gorduras na Dieta , Carboidratos da Dieta/metabolismo
17.
Sci Rep ; 13(1): 16465, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777528

RESUMO

Low-carbohydrates diets are increasingly used to treat obesity and metabolic disorders. A very low-carbohydrate, ketogenic diet is hard to follow and, due to the very high fat content, linked to severe side effects, like hyperlipidemia and atherogenesis. Therefore, a less restrictive, unsaturated fat-based low-carbohydrate diet appears as a promising alternative. Since neither sex differences, nor their effect on specific metabolic hormones and adipose tissue compartments have been investigated thoroughly in these diets, we aimed to analyze their dynamics and metabolic factors in mice. We found a significant sexual dimorphism with decreased body weight and subcutaneous fat only in males on ketogenic diet, while diminished insulin, elevated ghrelin and FGF-21 were present with a differential time course in both sexes. The non-ketogenic moderate low-carbohydrate diet increased body weight and perigonadal fat in females, but induced leptin elevation in males. Both diets enhanced transiently TNFɑ only in males and had no impact on behavior. Altogether, these results reveal complex sex-dependent effect of dietary interventions, indicating unexpectedly females as more prone to unfavorable metabolic effects of low-carbohydrate diets.


Assuntos
Dieta Cetogênica , Feminino , Masculino , Camundongos , Animais , Caracteres Sexuais , Tecido Adiposo/metabolismo , Dieta com Restrição de Carboidratos , Obesidade/metabolismo , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/metabolismo
18.
J Exp Zool A Ecol Integr Physiol ; 339(10): 978-993, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37602652

RESUMO

Ammonia is a common environmental stress factor that constrains aquaculture industry development. This study evaluated the effect of carbohydrate levels and ammonia stress in oriental river prawn (Macrobrachium nipponense). The experiment had six treatments containing two water ammonia levels (0 and 5 mg/L) and three dietary carbohydrate levels (low carbohydrate diet (LCD, 10%), medium carbohydrate diet [MCD, 20%], and high carbohydrate diet [HCD, 30%]), and lasted six weeks. The results showed that the prawns fed on MCD had higher weight gain than those fed on LCD and HCD during ammonia stress. Moreover, the prawns fed on MCD had significantly lower acid phosphatase and alkaline phosphatase activities during ammonia stress. Feeding the prawns on the MCD increased B cells in the hepatopancreas during ammonia stress. Interestingly, the prawns fed on MCD had significantly lower superoxide dismutase activity compared to LCD and HCD during ammonia stress. Moreover, the prawns fed on MCD had significantly lower pyruvate kinase activity and pyruvate and lactic acid contents, while those fed on LCD had significantly higher succinic dehydrogenase, 6-phosphogluconic dehydrogenase, and phosphoenol pyruvate carboxykinase activities during ammonia stress. The prawns fed on the MCD increased significantly glutaminase activity and decreased the ammonia content in the serum during ammonia exposure. In addition, feeding the prawns on MCD decreased significantly the expression of apoptosis and inflammation-related genes. Taken together, the MCD supplied energy required to counteract ammonia stress, which increased growth, improved antioxidant capacity, facilitated ammonia excretion, and alleviated inflammation and apoptosis of the oriental river prawn.


Assuntos
Antioxidantes , Palaemonidae , Animais , Antioxidantes/metabolismo , Palaemonidae/genética , Palaemonidae/metabolismo , Amônia/metabolismo , Amônia/farmacologia , Carboidratos da Dieta/metabolismo , Carboidratos da Dieta/farmacologia , Inflamação , Piruvatos/metabolismo , Piruvatos/farmacologia , Glucose/metabolismo , Glucose/farmacologia
19.
Nutrients ; 15(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37447354

RESUMO

Nutrition has a decisive influence on athletic performance. However, it is not only the nutrient intake during exercise that is important, but the daily diet must also be adapted to the requirements of physical activity in order to optimally promote training adaptations. The goal of prolonged endurance training is to enhance fat oxidation, to maintain aerobic performance at a higher intensity while sparing limited carbohydrate stores. The targeted modification of macronutrient intake is a common method of influencing substrate metabolism, fuel selection, and performance. However, it is not well established whether the glycaemic index of carbohydrates in our daily diet can improve endurance performance by influencing carbohydrate or fat oxidation during training. Therefore, the aim of the following review is to elucidate the possible influence of the glycaemic index on substrate utilization during exercise and to clarify whether the consumption of a long-term high-carbohydrate diet with different glycaemic indices may have an influence on substrate metabolism and endurance performance.


Assuntos
Índice Glicêmico , Resistência Física , Humanos , Metabolismo Energético , Atletas , Carboidratos , Carboidratos da Dieta/metabolismo
20.
An Acad Bras Cienc ; 95(suppl 1): e20220436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37436230

RESUMO

To evaluate the effects in adults rats submitted of a low-protein, high-carbohydrate (LPHC; 6% protein, 74% carbohydrate) diet and reversion (R) to a balanced diet introduced after weaning. Research methods & procedures: Male rats weigting approximately 100g (30 to 32 d old) were treated with control (C; 17% protein, 63% carbohydrate) or LPHC diets for 120 days. The reverse group (R) was treated with the LPHC diet for 15 days, and changed to C diet for another 105 days. Results: The LPHC group showed an increase in serum fasting triglycerides (TAG). Serum adiponectin was increased only in the LPHC group. Lipoprotein lipase (LPL) activity was decreased in the extensor digitorum longus (EDL) and cardiac muscles. The adiponectin receptor 1 content is the same among groups in the cardiac muscle, but it is lower in the EDL muscle in the LPHC group. In animals from the R group, these parameters are the same as the LPHC group. Thus, the LPHC diet administered for a long period, it promotes an increase in TAG. It is possible that there is adiponectin resistance in the EDL muscle, due to the lower LPL activity. The reversal of the LPHC diet did not normalize these parameters.


Assuntos
Adiponectina , Carboidratos da Dieta , Ratos , Masculino , Animais , Ratos Wistar , Desmame , Carboidratos da Dieta/metabolismo , Dieta , Dieta com Restrição de Proteínas , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...